Mean dimension, mean rank, and von Neumann–Lück rank

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean Dimension, Mean Rank, and Von Neumann-lück Rank

We introduce an invariant, called mean rank, for any module M of the integral group ring of a discrete amenable group Γ, as an analogue of the rank of an abelian group. It is shown that the mean dimension of the induced Γ-action on the Pontryagin dual of M, the mean rank of M, and the von Neumann-Lück rank of M all coincide. As applications, we establish an addition formula for mean dimension o...

متن کامل

Rank and dimension functions

In this paper, we invoke the theory of generalized inverses and the minus partial order on the study of regular matrices over a commutative ring to define rank–function for regular matrices and dimension–function for finitely generated projective modules which are direct summands of a free module. Some properties held by the rank of a matrix and the dimension of a vector space over a field are ...

متن کامل

On the Mean 3-rank of Quadratic Fields

The Cohen-Lenstra-Martinet heuristics give precise predictions about the class groups of a “random” number field. The 3-rank of quadratic fields is one of the few instances where these have been proven. In the present paper, we prove that, in this case, the rate of convergence is at least subexponential. In addition, we show that the defect appearing in Scholz’s mirror theorem is equidistribute...

متن کامل

Identification of Significant Features by the Global Mean Rank Test

With the introduction of omics-technologies such as transcriptomics and proteomics, numerous methods for the reliable identification of significantly regulated features (genes, proteins, etc.) have been developed. Experimental practice requires these tests to successfully deal with conditions such as small numbers of replicates, missing values, non-normally distributed expression levels, and no...

متن کامل

Real Rank and Topological Dimension of Higher Rank Graph Algebras

We study dimension theory for the C∗-algebras of row-finite k-graphs with no sources. We establish that strong aperiodicity—the higher-rank analogue of condition (K)—for a k-graph is necessary and sufficient for the associated C∗-algebra to have topological dimension zero. We prove that a purely infinite 2-graph algebra has real-rank zero if and only if it has topological dimension zero and sat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal für die reine und angewandte Mathematik (Crelles Journal)

سال: 2018

ISSN: 0075-4102,1435-5345

DOI: 10.1515/crelle-2015-0046